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Abstract— Recent advances in 3D sensing and volumetric data 

compression are encouraging research efforts to meet the 

demands for vision guidance of autonomous vehicle. 

Nowadays, autonomous vehicle technology is successful in a 

high percentage of common road scenarios. However, new 

research efforts are required to meet the demands for higher 

performance. The diversity of traffic scenarios in the urban 

environment presents great challenges, foremost for video-

based environment recognition. Autonomous driving 

technology and other automated assistance systems process 

huge amounts of data, thus efficient data compression, storage 

and retrieval is necessary. Key technologies for autonomous 

vehicles, i.e. 3D video/Point Cloud compression solutions for 

camera and LiDAR sensor systems are presented in this 

paper.   
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I. INTRODUCTION 

The research in 3D sensing and the development of 

embedded systems strongly support the vision guidance for 

autonomous vehicles. Advanced sensing technology 

includes machine vision image recognition technology, i.e. 

radar (laser, millimetre wave, ultrasound) scanning of the 

traffic scene. Camera generates 20-60 MB/s, radar upwards 

of 10 kB/s, sonar 10-100 kB/s, GPS runs at 50 kB/s, and 

LiDAR between 10-70 MB/s. Based on these numbers, 

each autonomous vehicle generates approximately 4 TB of 

data a day. Thus, efficient compression, storage and 

retrieval are necessary to process huge amounts of data in 

real-time. Using multi-sensor fusion, a consistent 

environmental model is generated from the sensing data for 

the purposes of a scene mapping, obstacle recognition, and 

for identifying moving objects [1, 2]. 

An autonomous car is a vehicle that is capable of 

sensing its environment and moving with little or no human 

input. There are five essential steps in autonomous vehicle 

guidance. In the localization step, a vehicle gets the data 

from all the above mentioned sensors and determines its 

perception with the highest possible accuracy. Perception 

is how cars sense and understand their environment. In the 

prediction step, cars predict the behaviour of every object 

(vehicle or human) in their surroundings. How they will 

move, in which direction, at which speed, what trajectory 

they will follow. Path planning is how the car plans the 

route to follow, or in other words, how it generates its 

trajectory. Finally, the control system uses a trajectory 

generated in the previous step to accordingly change the 

steering, acceleration or deceleration of the car.  

In the first part of the paper, requirements for the next-

generation autonomous vehicles are pointed out. Principles 

of technical operation and performance of 3D sensing 

devices and research and development of digital video 

codecs are presented in the second part. 

II. REQUIREMENTS FOR THE NEXT-GENERATION AIV 

In the near future, automotive intelligence (AIV) will 

boost the next generation of vehicles and provide human-

level intelligence. Future intelligent vehicles will go in the 

direction toward environmental protection, energy saving, 

intelligence, personalization, safety and comfort [1, 3].  

Advanced driver assistance system (ADAS) makes use 

of various kinds of in-car sensors; collects real-time 

information about the environment, recognizing the static, 

as well as dynamic objects, and then recommends the most 

suitable driving actions to the driver to avoid dangerous 

situations. ADAS relies on inputs from multiple data 

sources and supports automotive imaging, RaDAR, LiDAR, 

image processing, computer vision, and in-car networking. 

Normally, ADAS includes a GPS navigation system, 

intelligent transportation services (ITS), automatic parking 

(AP), adaptive cruise control (ACC), and lane keeping 

assist system (LKAS).  

The Society of Automotive Engineers (SAE) 

classification system is based on six different levels, 

ranging from fully manual (Level 0) to fully automated 

systems (Level 5). This classification system is based on 

the amount of driver intervention and attentiveness 

required. Driver assistance systems that enable autonomous 

driving from Level 3 need at least three types of sensor 

systems: video camera, RaDAR and LiDAR systems. 

Cameras are mainly used to detect the near objects and to 

obtain the image regions with possible obstacles 

considering its rich information and high sensitivity to the 

lateral displacement. RaDAR and LiDAR are real-time 
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depth data sensors capable of detecting far or longitudinally 

moving objects. 

Automotive intelligence is a trend in the automotive 

research area which requires high-precision maps with a 

high update rate. To reach the state of fully automated 

driving, a high-precision map is the foundation, but real-

time information is also required. The world model aims at 

providing a precise representation of the world. Precision 

is the key parameter for measuring the performance of a 

map for autonomous vehicles. The concept of global 

navigation still dominates other approaches to autonomous 

navigation. The vehicle is guided by trajectories derived 

from planning algorithms operating in global metric maps 

of the environment [1]. 

All autonomous vehicles being tested rely on one or 

more of the four main technologies in the industry: video 

cameras, RaDAR, LiDAR, and the Global Positioning 

System (GPS). The specific technologies under these 

umbrellas are continually advancing, and the way in which 

each R&D utilizes them is different, but all ways lead back 

to these four areas. Many regular cars on the market today 

have rear cameras or cameras that monitor activity around 

the vehicle and warn drivers when they are about to change 

lanes unsafely or collide with an object. For autonomous 

vehicles, video cameras are more numerous and more 

advanced. Even though the cameras on autonomous 

vehicles are high-performance, low light and distractions 

like driving under rain can mislead cameras. With RaDAR, 

electromagnetic waves are emitted away from the source 

and travel until they collide with an obstacle, at which point 

they bounce back towards their source. Self-driving cars 

use both short- and long-range radars to glean information, 

especially on how fast the vehicles around them are 

traveling, although they struggle with the height of objects 

(like bridges). LiDAR uses pulses of near-infrared light 

instead of radio waves, which are emitted millions of times 

in just one second, and it relays that exact measurements to 

a computer, where a 3D map of the world around an 

autonomous vehicle can be created and used to guide its 

path [2]. 

Local environmental perception refers to the ability of 

an autonomous system to collect information and extract 

relevant knowledge from the traffic scene. It is one of the 

main challenges in the field. Environmental conditions, like 

lighting or colours, are permanently changing, and there are 

a lot of static, as well as dynamic objects in the scene to be 

taken into account. The best perception results are typically 

achieved by the strengths of different sensors. Vehicles 

must be able to recognize their environment and take 

control. The vehicle must perceive relevant objects, 

including other traffic participants and infrastructure 

information, but also assess the situation and generate 

appropriate actions. To perceive the 3D information, 

normally two steps are involved: segmentation and 

classification. Some may include a third step, time 

integration, to improve the accuracy and consistency. 

Segmentation of a point cloud is the process of clustering 

points into multiple homogeneous groups, while 

classification is meant to identify the class of the segmented 

clusters. After the segmentation, each cluster needs to be 

categorized into different objects [4]. 

Different sensors have different strengths and 

weaknesses. Sensor fusion techniques are required to make 

full use of the advantages of each sensor. A video camera 

is able to provide rich appearance data with much more 

object details, but its performance is not consistent across 

different illumination conditions. Furthermore, a camera 

does not implicitly provide 3D information. LiDAR is able 

to produce 3D measurements and it is not affected by the 

illumination of the environment, but it offers little 

information on objects’ appearances. Sensor fusion is 

performed in most current systems, especially when 

complementary sensors like colour cameras (with good 

angular resolution, no distance information) and range 

measuring devices (with no colour, bad angular resolution, 

and precise distance information) are available. Sensor 

fusion may then proceed at different levels of abstraction. 

The fusion could be done at the feature level, tracking a 

road boundary based on 3D measurements from the LiDAR, 

and image features from vision. The last level of fusion 

operates on the object level, fusing the detected objects.  

LiDAR refers to a light detection and ranging device, 

which sends millions of light pulses per second in a well-

designed pattern. With its rotating axis, it is able to create a 

dynamic, 3D map of the environment. The outputs from the 

LiDAR are sparse 3D points reflected back from the objects, 

with each point representing an object’s surface location in 

3D, with respect to the LiDAR. Three main representations 

of the points are commonly used, including point clouds, 

features, and grids. Point cloud-based approaches directly 

use the raw sensor data for further processing. This 

approach provides a finer representation of the 

environment, but at the expense of increased processing 

time and reduced memory efficiency. To mitigate this, 

usually a voxel-based filtering mechanism is applied to the 

raw point cloud to reduce the number of points. Feature-

based approaches first extract parametric features out of the 

point cloud and they present the environment using the 

extracted features. The features that are commonly used 

include lines and surfaces. Grid-based approaches 

discretise the space into small grids, each of which is filled 

with information from the point cloud, such that a point 

neighbourhood is established. An adaptive octree is 

proposed to guide the segmentation from coarse grids to 

fine ones [2]. 

III. 3D CODECS RESEARCH AND DEVELOPMENT 

The prerequisite for any kind of autonomous driving is 

sensor detection of the vehicle environment. In order to 

meet the high requirements in terms of reliability, field of 

vision, and range, several different sensor systems are 

generally used. Using multi-sensor fusion, a consistent 

environmental model is generated from the measurement 

data for the purposes of mapping, obstacle recognition, and 

for identifying moving objects [5, 6].  

Large-scale 3D maps of outdoor environments can be 

created using devices that provide localization combined 

with depth and colour measurements of the surrounding 

environment. A combination of LiDAR point cloud data 

and camera images generates a 3D map. These maps are 

further combined with road markings, such as lane 

information and road signs, in order to enable autonomous 

navigation of vehicles. Multiple map layers will be stored 
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and exchanged across the network, including static maps 

that do not change very frequently and dynamic maps that 

include real-time information about dynamic objects in a 

scene, such as vehicles or pedestrians.  

For environment perception, both image-based sensors 

like monocular and stereo cameras (monochrome and 

colour), and range sensing devices like RaDAR and LiDAR 

are used. RaDAR sensors are additionally able to determine 

the object’s relative velocity directly. Light detection and 

ranging (LiDAR) sensors are commonly used in perception 

for autonomous vehicles because of their high accuracy, 

speed, and range. Distance-providing image-based sensors 

are mostly based on a time-of-flight principle.  

A. Principles of technical operation and performance  

Sensing devices are the essential components for 

acquiring the information of environmental conditions and 

the surrounding objects. The implementation of a 

comprehensive number of sensory inputs from different 

types of sensing modalities provides more reliable and 

complete information. The commonly used sensing devices 

include a video camera, radio detection and ranging 

(RaDAR) transducer, and light detection and ranging 

(LiDAR) transducer. Each of these sensing modalities 

retains characteristics and behaviours that might either 

beneficially enhance or adversely decimate the sensory 

performance, depending on certain conditions due to the 

distinct principle of technical operations [2].  

The principle of operation for video camera imaging is 

conducted by receiving light information that is reflected 

from the surrounding objects and the environment from the 

external light sources. The imaging sensor is sensitive to 

light interference because the perceived quality of the 

acquired image depends on the presence of either inferior 

or excessive amount of light. The RaDAR is an active 

transducer which uses radio frequency waves to measure 

the time of flight between the transmitter and the receiver 

on a certain degree of the field of view. LiDAR is an active 

transducer which uses modulated infrared (IR) waves to 

measure the time of flight on a full-round of the field of 

view. It is obvious that both of the surveyed internal and 

external constraints are interfering with data quality (Table 

1). 

TABLE I   COMPARISON OF 3D SENSING DEVICES. 

Video camera RaDAR LiDAR 

 passive sensor type 

 50m sensing range 

 60° field of view 

 dense resolution  

 mildly sensitive on 

weather conditions 

 highly sensitive on 

illumination and 

sun-exposure 

 active sensor type 

 150m sensing range 

 30° field of view 

 highly sparse 

resolution  

 mildly sensitive on 

weather conditions 

 

 active sensor type 

 100m sensing range 

 360° field of view 

 sparse resolution  

 highly sensitive on 

weather conditions 

 mildly sensitive on 

sun-exposure 

The performance of non-contact sensing techniques of 

a video camera, RaDAR and LiDAR can be interfered by 

the external constraints. In adverse weather condition, the 

medium for probe wave propagation is occupied with 

unwanted particles that reduce the visibility. The internal 

constraints that influence the sensing performance are 

sensing range, field of view, and data resolution. Each of 

these constraints can be seen as a trade-off function. 

However, through the implementation of multi sensing 

modalities and multi-level fusion methodology, it is 

possible to achieve optimal performance. Video camera 

and RaDAR are a perspective combination that provides a 

dense resolution and the broadest sensing range. However, 

from the perspective of the field of view, LiDAR offers the 

widest field of view that covers 360°, or a full-round view. 

B. 3D Video codecs 

The spatial resolution UltraHD provides drivers with 

enhanced visual experience via a wide field of view (FoV), 

both horizontally and vertically. 4K UltraHD is four times 

the high-definition (HD) resolution, and thus can deliver a 

larger amount of visual information from the sensors. 

Traffic scenes with complicated lighting conditions have a 

high dynamic range (HDR). Dynamic range is the ratio 

between the values of the largest light intensity and the 

smallest possible light intensity in a scene. The UltraHD 

HDR video format defines enhanced parameters of a video 

camera: higher spatial resolutions (3,840x2,160 and 

7,680x4,320 image samples), frame rates (up to 120Hz), 

sample bit depths (up to 12 bits for HDR high dynamic 

range support) and a wider colour gamut (ITU-R BT.2020). 

The format requires increased storage capacity and 

bandwidths, so video compression is an essential and 

important first step.  

The latest video compression MPEG standard, high 

efficiency video coding (3D-HEVC) and new versatile 

video coding (VVC) support 3D vision formats [5, 6]. VVC 

efficiency coded three types of camera video: standard 

dynamic range (SDR), high dynamic range (HDR), and 360° 

field of view (omnidirectional view). Various technologies 

are being proposed and evaluated in the MPEG JVET’s 

exploration process (Table 2). The target compression 

performance has a 30–50% bit-rate reduction compared to 

HEVC for the same subjective video quality. MPEG-I Part 

3 VVC is scheduled to reach the FDIS stage (the final draft 

International Standard) in October 2020.  

TABLE II   MPEG JVET DEVELOPMENT PROCESS. 

Meeting Working process 

Oct. 2015 
Joint Video Exploration Team (JVET) developed the  

JEM (Joint Exploration Model) reference software  

June 2016 
FVC requirements for the functionalities and 

performance 

April 2017 Call for Evidence (CfE) 

Oct. 2017 
Call for Proposal (CfP) - 26 responses from 21 

organizations 

April 2018 

ISO/IEC 23090 MPEG-I Part 3 - Versatile Video 

Coding 

(118 working documents) 

July 2018 
VVC Working Draft 2, Test Model VTM 2  

(559 documents) 

Oct. 2018 
VVC Working Draft 3, Test Model VTM 3  

(690 documents)  

Jan.2019 
VVC Working Draft 4, Test Model VTM 4  

(897 documents) 
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March 2019 
VVC Working Draft 5, Test Model VTM 5  

(858 documents) 

Oct. 2020 VVC FDIS 

Some of the principal tools adopted in VVC so far 

are listed in Table 3. Many proposals are intensively 

evaluated and selected at each meeting. 

TABLE III   PRINCIPAL CODING TOOLS ADOPTED IN VVC. 

Category VVC Working Draft 4 

Partition 

structure 

Maximum size 28x128, Quad-/Ternary-/Binary-tree,  

CST (chroma separate tree) 

Intra 

prediction 

DC+Planar+65 directional prediction+28 wide angle+3 CCLM 

(cross-component linear model), PDPC (position dependent 

prediction combination), MLIP (multi-line intra prediction), 

CPR (current picture referencing) 

Inter 

prediction 

AFF (affine motion compensation), CIIP (combined intra/inter 

prediction), triangular, BWA (bi-directional weighted 

average), decoder-side motion refinement (BDOF bi-

directional optical flow), DMVR (decoder-side motion vector 

refinement), MV prediction (ATMVP alternative temporal 

motion prediction), HMVP (history-based motion vector 

prediction), AMVR (adaptive motion vector difference), PMC 

(pairwise merge candidate), MMVD (merge with motion 

vector difference) 

Transform 

Square and rectangular transforms (up to 64x64 size), shape 

adaptive transform, MTS (multiple transform set DCT2, 

DST7, DCT8) 

In-loop 

filter 

ALF (adaptive loop filter), large-block adaptive DF, LADF 

(luma-adaptive DF), SAO 

Entropy 

coding 
DQ (dependent quantization), template context 

 

The most recent reference software for VVC, 

VTM5.0, achieves a 33.14% bit-rate reduction with an 

encoding runtime of 6.71 times, and a decoding runtime of 

1.03 times compared to HEVC reference software 

HM16.19, under the random access coding structure. More 

details are given in Table 4. Faster coding tools with more 

coding gain are demanded. 

TABLE IV CODING PERFORMANCE: VVC CODEC VTM5.0 VS. HEVC 

HM16.19 

Coding 
structure 

Luminance-Y  
BD-rate 

Encoding 
runtime 

Decoding 
runtime 

All Intra -23.14% 22.46 1.04 

Random 
Access 

-33.14% 6.71 1.03 

Low delay B -24.69% 4.82 0.89 

Low delay P -28.15% 4.39 0.92 

C. Compression of dynamically acquired point clouds  

Point clouds (PC) have recently emerged as 

representations of the real world, enabling more immersive 

formats to better understand and navigate it. MPEG 3D 

content categories (static objects and scenes, dynamic 

acquisition, dynamic object) are typically captured using 

various setups of multiple cameras, depth sensors, and 

LiDAR scanners. The PC codec standard targets efficient 

geometry, an attributes compression, scalable/progressive 

coding, and coding of sequences of point clouds captured 

over time. In addition, the compressed data format should 

support random access to subsets of the point cloud in the 

reconstruction of object/scene as a composition of points [7, 

8].  

Key requirements for PCC automotive application are: 

• high precision is needed to support localization needs, 

• low complexity and/or support for real-time 

encoding/decoding is needed,  

• low delay is needed for real-time communication of 

dynamic parts of the map, 

• region selectivity is important to maintain and access 

the map data, 

• colour attributes coding is needed for realistic 

rendering and visualization, 

• additional attributes coding for reflectance and other 

scene properties. 

Various technologies are being proposed and evaluated 

in the MPEG exploration process. The target compression 

performances are presented in Table 5. Video-based PCC 

(V-PCC) of MPEG-I Part 5 is scheduled to reach the FDIS 

stage in January 2020, and Geometry-based PCC (G-PCC) 

of MPEG-I Part 9 is scheduled to reach the FDIS stage in 

April 2020. 

TABLE V   COMPRESSION REQUIREMENTS FOR  

MAPPING IN AUTOMATED DRIVING. 

Compression format 
(lossy, good quality) 

Compression ratio 
[bpp] 

2D Flat UHD (Intra/Inter) 0.25-0.5 / 0.025-0.1 

3D (2D + smooth depth) 2D Flat + 25% (for parallax) 

3D (Multi-View) 2D * No. views * 75% 

Point Cloud Coding Geometry 1-3, Texture 0.5-2 

 In 2014, MPEG began an exploration activity on PCC. 
Observing the fast-growing interest of point cloud-based 
applications from industry, MPEG made a call for 
proposals (CfP) for PCC in 2017 and evaluated a set of 13 
technical proposals in October 2017. As an outcome, three 
different technologies were chosen as test models for three 
disparate content categories (static objects and scenes, 
dynamic acquisition, and dynamic objects). As an input 
format to PCC, MPEG currently uses the Polygon File 
Format to represent point clouds. In this format, every point 
has a 3D position and its associated attributes. Generally, 
this includes colours and eventually other properties, such 
as reflectance attributes. Each point is supposed to have the 
same number of attributes as a legitimate input to PCC. 
Typical MPEG test point clouds have the following 
characteristics (Table 6):  

• millions to billions of 3D points with up to 1cm 
precision 

• colour attributes with 8-12 bits per colour component  

• normals and/or reflectance properties as additional 
attributes. 

A point cloud is defined as a set of (x,y,z) coordinates, 

where x, y, z have a finite precision and dynamic range. 
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Each (x,y,z) coordinate can have multiple attributes 

associated to it (a1, a2, a3…). Typically, each point in a 

cloud has the same number of attributes attached to it.  

     Pointv = ((x,y,z), [c],[a0…aA ]):  x,y,z ∈ R          (1) 

     c ∈ (r,g,b) | r,g,b ∈N,  ai ∈ [0,1] 

 

The point cloud is then simply a set of K points without 

a strict ordering: 

      Point CloudA = {(vi ): i=0,…,K-1}                       (2) 

TABLE VI   DYNAMICALLY ACQUIRED (FUSED POINT CLOUDS) 

 TEST MATERIAL. 

Data set (sequence number) 
Points number, 

geometry precision  
Attributes 

CityTunnel (28) 

 

 

 

 

 

 

 

 

21.163.706 

32 bit 

RGB, I 

 

OverPass (29) 

 

 

 

 

 

 

5.326.157 

32 bit 

RGB, I 

 

ToolBooth (30) 

 

 

 

 

 

 

7.148.520 

32 bit 

RGB, I 

 

 

For dynamically acquired point clouds data, the G-PCC 

compressed geometry is typically represented as an octree 

from the root all the way down to a leaf level of individual 

voxels (octree geometry codec). There are 3 attribute 

coding methods: Region Adaptive Hierarchical Transform 

(RAHT) coding, interpolation-based hierarchical nearest-

neighbour prediction (Predicting Transform), and 

interpolation-based hierarchical nearest-neighbour 

prediction with an update/lifting step (Lifting Transform). 

Let A and B denote the original and the compressed 

point cloud, respectively. Consider evaluating the 

compression errors, as denoted in the point cloud relative 

to the reference point cloud. In the case of a lossy 

compression, the number of points in the set and/or the 

positions x,y,z are not identical to the original. For 

objective evaluation metrics, the geometric PSNR is 

defined as the peak signal over the symmetric distortion:  

          PSNR=10 log10 (3p^2/MSE)                          (3) 

 

where p is the peak constant value defined for each 

reference point, and MSE is the mean squared point-to-

point (D1) or point-to-plane (D2) error. 

 

 

Fig. 1  Performance of G-PCC Octree reference codec TMC3 v6:  
PSNR vs. Reflectance Bits per input point for data set CityTunnel. 

For lossy attribute coding, the attribute PSNR value is 

computed as MSE for each of the three color components 

(Fig. 1). A conversion from RGB space to YUV space is 

conducted using the ITU-R BT.709, since the YUV space 

correlates better with human perception. A symmetric 

computation of the distortion is utilized in the same way as 

it is done for geometric distortions. In the case of lossless 

compression, the decoder returns exactly the same set of 

(x,y,z) coordinates, with exactly the same attributes. 

IV. CONCLUSIONS 

In order to safely operate with autonomous vehicles, a 

multitude of problems in perception, navigation, and 

control have to be solved. High-accuracy and high-

efficiency 3D sensing and associated data processing 

techniques are urgently needed. While progress has been 

made with applying 3D sensory data to those applications, 

many essential questions remain regarding the processing 

and understanding of such massive 3D data. Dynamic point 

clouds can be used for some newly emerging applications, 

such as autonomous navigation based on 3D largescale 

dynamic maps.  

Our main intention with this article was to provide an 

overview of the standardization trends in the MPEG PCC 

and to acquaint readers with the most recent work of the G-

PCC codec with dynamically acquired data. From the 

requirements of PCC to future technical specification 

development, we address the basic framework of PCC and 

briefly discuss what lies ahead until MPEG PCC becomes 

the international standard in 2020. Researchers will 

continue to explore ways to improve and enhance 

autonomous vehicle technology. As advancements are 

made in self-driving vehicle technology, these features will 

become more prevalent, and likely less expensive. 
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